
OPERATIONAL PREDICTION SYSTEM NOTES

A Tropical Cyclone Rapid Intensification Prediction Aid for the Joint Typhoon
Warning Center’s Areas of Responsibility

JOHN A. KNAFF

NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado

CHARLES R. SAMPSON

Naval Research Laboratory, Monterey, California

BRIAN R. STRAHL

Joint Typhoon Warning Center, Pearl Harbor, Hawaii

(Manuscript received 15 November 2019, in final form 24 March 2020)

ABSTRACT

In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint

Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI)

thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ’ 0.51 m s21) increases in 24 h

(RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in

48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when

probabilities exceed 40%, and the latter are included as members of the operational intensity consensus

forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all

JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of

intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodo-

logical weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum

winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies.

Modifications to the deterministic forecasts that address these issues are presented, and newly derived and

more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA

is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The per-

formance from this test indicates the new RIPA—when compared to its predecessor—has improved prob-

abilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.

1. Introduction

The Joint Typhoon Warning Center (JTWC) provides

tactical tropical cyclone (TC) forecasts forU.S.Department

of Defense installations operating in the western North

Pacific, Indian, and South Pacific Oceans. These fore-

casts include position, intensity,1 and the radii of 34-, 50-,

and 64-kt (kt; 1 kt 5 0.514ms21) winds through 5 days.

The last decade or so has seen improvement in JTWC’s

intensity forecasts due to the availability of skillful in-

tensity guidance coming from the Statistical Typhoon

Intensity Prediction Scheme (Knaff et al. 2005), the

Statistical Hurricane Prediction Scheme (DeMaria et al.

2005; transitioned to JTWC in 2013), the Hurricane

Weather Research and ForecastModel (HWRF; Biswas

et al. 2018), the Coupled Ocean–Atmosphere Model

Prediction System-TC (COAMPS-TC;Doyle et al. 2014),

and consensus aids (Sampson et al. 2008) as discussed in

DeMaria et al. (2014). The improvements, while incre-

mental, are evident in seasonal error statistics [IHC 2019;

JTWC 2018 (cf. Figs. 6-4 and 6-8)].Corresponding author: John Knaff, john.knaff@noaa.gov

1Operational units for intensity are knots or nautical miles

per hour. For that reason, those units are used throughout this

manuscript.
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The skillful deterministic statistical models, however,

rarely produce forecasts with intensity changes asso-

ciated with rapid intensification (RI) events due to the

multiple time and space scales involved in the process

(Kaplan et al. 2015, and references therein). As model

resolutions have steadily increased, numerical weather

predictions are increasingly capable of forecasting rapid

changes in TC intensity (see Leroux et al. 2018; Courtney

et al. 2019a,b and references therein). However, concerns

such as false alarm rates and forecast timing of such

events remain a barrier to operational reliability. To date,

statistical guidance specifically designed to overcome

the noted shortcomings of existing intensity guidance by

forecasting probabilities associated with the occurrence

of RI events has been developed on a basin-by-basin

basis (see Kaplan and DeMaria 2003; Kaplan et al. 2010,

2015). These efforts have successfully provided guidance

methods to anticipated RI events in the Atlantic and

east Pacific that have helped forecasters make de-

terministic forecast decisions (see Gall et al. 2013;

Rappaport et al. 2012). Statistics reveal that while the

probability of detection ranges from 35% to 60%, the

false alarm rates are 65%–60% for forecasts of 30-kt

changes in 24 h in Atlantic and east Pacific (Kaplan

et al. 2015), leaving forecasters with only difficult

decisions. Following those efforts, Knaff et al. (2018)

generated a set of tools to probabilistically predict

several RI thresholds and trigger deterministic forecasts

of those thresholds for use in JTWC’s consensus intensity

aids for the western North Pacific basin. This guidance,

known as the Rapid Intensification PredictionAid (RIPA),

was transitioned to JTWC operations in late 2017.

Although there was a strong desire to test RIPA’s

capability and get forecaster feedback, this late instal-

lation provided only limited initial results in the western

North Pacific. A decision was made to provide this

guidance for the 2018 Southern Hemisphere and north

Indian Ocean storms in addition to those that formed in

the western North Pacific. The early verification during

this real-time implementation revealed some performance

issues, leading to updates to these tools and modifications

to the way that RIPA tools are used in JTWC operations.

Specifically, the deterministic aids generally worked well

for TCs with initial intensities of 35 kt and above away

from land; however, these aids had large errors for dis-

turbances with initial intensities less than 35kt and for

landfall cases. Also, there appeared to be erratic forecast-

to-forecast behavior for some predictions. Issues such as

thesewere expected since this was the first attempt to apply

these models to the western North Pacific in real time.

The purpose of this work is to: 1) evaluate the real-time

runs of the methods presented in Knaff et al. (2018),

2) describe a few engineering solutions that make the

deterministic aids more plausible, and 3) present a re-

derivation of the underlying statistical models using a

dataset from the entire JTWC AOR (Knaff et al. 2018

used only western North Pacific data), using more im-

proved statistical assumptions in the model construc-

tion. The next section reviews the expanded dataset and

improved methods to derive the statistical models. This

discussion is followed by our results, which demonstrate

the performance of these new methods using the inde-

pendent and real-time information collected during the

2018 and 2019 seasons. Finally, we close with a summary

of the work and conclusions.

2. Data and methods

JTWC’s historical best tracks provide quality con-

trolled 6-hourly position, intensity, and radii informa-

tion for each TC tracked by JTWC. These data are in the

Automated Tropical Cyclone Forecast system (ATCF;

Sampson and Schrader 2000) format (available at http://

www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/).

Due to issues such as latency of real-time data and op-

erational resource protection considerations, ‘‘working’’

best track data may contain biases, whereas the ‘‘final’’

best tracks have been reanalyzed following the season

using all available data and current operational practices.

For the RI problem, working best tracks can underesti-

mate intensity changes during RI events. Both working

and final best tracks use units of knots and nautical miles

(n mi; 1 n mi ’ 1.85 km) for intensity and distance, re-

spectively, and these units will be used throughout to

maintain consistency with JTWC operations.

For this work, we also use the SHIPS (2019) devel-

opmental dataset (2000–17) and large-scale diagnostic

files (LSDFs). These datasets have the same format and

contain the same predictors. The real time LSDFs are

different than those in the developmental dataset in that

they are based only on information available in real-

time (i.e., an operational JTWC estimate of location and

intensity, a 6-h-old2 model forecast track, and corre-

sponding environmental conditions) and so they provide

slightly degraded information. For this work, we use the

same set of predictors used in Knaff et al. (2018). For

brevity, their descriptions and acronyms used in our

discussion are provided in Table 1. Potential predictors

are assembled into three groups: a subset of the envi-

ronmental condition parameters in the LSDFs, storm-

centered infrared (IR) imagery-based initial conditions,

2 Current global model output data available for SHIPS are

available after the tropical cyclone advisory warning package has

been written and disseminated.
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and real-time best track parameters. A full description

of how these are calculated and their justifications are

provided in Knaff et al. (2018) and SHIPS (2019). All

TCs in best tracks with intensities greater than or equal

to 25 kt that did not make landfall within the forecast

period were used for development. Landfall was deter-

mined by a distance to land algorithm that contains

continents, and moderate sized islands, and that has

been used with SHIPS development. For instance, La

Reunion, Bali, and Melville Island, Australia, are in the

dataset, but Guam and Okinawa are not.

There is, however, one notable change in Table 1 and

in this work. The initial intensity predictor (VMAX) is

now capped at 75kt for the following reason. Scatterplots

of potential intensification (POT) versus VMAX reveal

that the two variables strongly covary with R2 5 0.78

(Fig. 1a). However, when POT’s contribution to inten-

sification is removed via linear regression, the residual

24-h intensity change occurs in two separate regimes

(Fig. 1b) one below 80kt and before the eye typically

forms in infrared imagery (Vigh et al. 2012) and another

at intensities higher when an eye typically exists. For

weaker TCs intensity change is positively correlated

with VMAX, explaining about 5% of the remaining

variance, but for stronger TCs VMAX is only slightly

negatively correlated. Above 75-kt intensity, the in-

tensification rate is mostly related to POT indicated by

the limited scatter at high intensity shown in Fig. 1a. To

address this dilemma simply, we limited the VMAX

term to 75 kt so that RI is more favored as VMAX

approaches 75 kt.

As in Knaff et al. (2018), we use two statistical

methods for making probabilistic forecasts. The first

is linear discriminant analysis (LDA), which is a classi-

fication method originally developed in Fisher (1936),

and second is logistic regression (LRE; Wilks 2006).

In LDA, a linear combination of variables that best

separates two or more groups is developed. We assume

two groups: thosemeeting the threshold intensity changes

and those that do not. Additionally, both groups are as-

sumed to have the same covariance structure. The dis-

criminant vector a has a direction in n-dimensional space

that maximizes the distance between themeans of Group

1 and Group 2 in standardized units or the discriminant

function d. Thus, d is the scalar projection of the data

vector x in the direction ofmaximum separation along the

discriminant vector, as shown in Eq. (1) to be

d5 aTx: (1)

Weused the InternationalMathematical and Statistical

Libraries (IMSL 2019) to make these calculations. Prior

probabilities are calculated from thematching dependent

discriminant functions and a one-dimensional, single-pass

Barnes (1964) analysis windowing procedure relates

probabilities to discriminant function values. In applica-

tion, a cubic spline provides a probability given the in-

dependent discriminant function value.

TABLE 1. Potential predictors for algorithms to predict the probabilities of rapid intensification at various intensification

rate thresholds. Predictors include forecast parameters (environmental predictors) and initial conditions (IR predictors and best

track/advisory-based predictors). Static predictors (i.e., those available only at t 5 0) are italicized.

Acronym Description

Environmental Predictors (time averaged from t 5 0 to time of the forecast)

GSHR 850–200-hPa generalized wind shear calculated as the mass-weighted root-mean-square deviations of the winds from

the mass-weighted deep-layer mean winds times a factor of 4 calculated in a 200–800-km annulus (Knaff et al. 2005)

OHC Oceanic heat content between the surface and the depth of the 268C isotherm (Shay et al. 2000, and references within)

RHMD 700–500-hPa relative humidity averaged within a 200–800-km annulus

DIVC 200-hPa divergence following the storm, calculated in a 500-km circle centered on the TC

POT Potential intensification calculated from the potential intensity as a function of SST at storm center and the current

intensity (at t 5 0)

REFC Average relative eddy momentum flux convergence calculated in 100–600-km annulus (m s21 day21)

TADV The temperature advection between 850 and 700 hPa averaged from 0 to 500 km calculated from the geostrophic

thermal wind

IR predictors

PC50 Percentage of IR pixels colder than 2508C within a 50–200-km annulus

PC60 Percentage of IR pixels colder than 2608C within a 50–200-km annulus

SDO Standard deviation of IR brightness temperatures 100–300-km annulus

RMNT Radius of minimum brightness temperature (0–150 km)

FR5 The deviation of IR-based TC size (R5) from the climatological population as a function of TC intensity

Best track/advisory-based predictors

VMAX Current TC intensity (t 5 0) up to 75 kt, fixed at 75 kt for all higher intensities

DV 12-h change in TC intensity, which is limited by the following function, DV5 min[min(VMAX3 0.33, 17.5), DV]
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In LRE, the dependent variable is a defined cate-

gory; ‘‘1’’ for reaching the intensification threshold and

‘‘0’’ for not having met the intensification threshold.

LRE is a special generalized linear model, where the

logit (i.e., the log of the odds) based on categorical data

are fit to a linear combination of independent predic-

tors (x1, . . . , xn) with intercept bo. The weights (b1, . . . ,

bn) in this case, are determined via the method of

maximum likelihood. Equation (2) shows the logit

(left-hand side of equation) as a linear combination of

predictors:

ln

�
p
e

12 p
n

�
5 b

o
1 b

1
x
1
1 � � � 1 b

n
x
n
. (2)

We use logistic regression code (CSIRO 2019) to fit

the model by iteratively reweighted least squares.

Forward variable selection with an occasional backward

step was used with the knowledge of the LDA model

predictors. For refined variable selection, we seek an

LRE model with the best fit while trying to ensure

physically consistent and statistically significant coeffi-

cients. The backward step removes predictors that had

lost their statistical significance (99%, chi-squared). The

LRE model has different assumptions about the rela-

tionship between dependent and independent variables

when compared to linear regression. The two primary

differences are 1) since the dependent variable is binary,

the conditional distribution is a Bernoulli distribution

(i.e., 1 or 0) rather than a Gaussian distribution, and

2) the predicted values are probabilities. Once fitted,

the probability of exceeding the intensification thresh-

old (pRI) takes the form of Eq. (3):

p
RI

5
1

(11 e2(bo1b1x11���1bnxn))
. (3)

The quality of fit metric for logistic regression is

called deviance—a generalization of the idea of using

the sum of squares of residuals in ordinary least

squares, but where the model is fit using a maximum

likelihood criterion. Deviance is formally defined

as 22 times the log-likelihood ratio of the fitted model

compared to the full (i.e., perfect) model. One can also

define the percent deviance explained as 1 minus the

ratio of the fitted model deviance to the deviance of a

model containing only the intercept b0 (Knaff and

DeMaria 2017).

Using the LDA and LRE methods described above,

we developed algorithms of weighted combinations of

predictors to predict 25-, 30-, 35-, and 40-kt changes in

24h; 45- and 55-kt changes in 36 h; and 70-kt changes in

48h. We will refer to these as RI25, RI30, RI35, RI40,

RI45, RI55, and RI70, respectively.

To determine how well models are fit to the dependent

sample, we use the Brier score (Brier 1950), theBrier skill

score and, for just the LRE models the percent deviance

explained. The Brier score (BS) is essentially the mean

squared error of the probabilistic forecast:

BS5
1

k
�
k

k51

y
k
2 o

k

� �2
, (4)

where yk is the forecast probability and ok is the ob-

served probability (effectively 0 for no RI or 1 for RI),

and k is the number of cases. A Brier skill score (BSS) is

FIG. 1. (a) Scatterplots of current intensity (VMAX) vs potential

intensification (POT) and (b) VMAX vs the residual of a POT-based

24-h intensity change, where points with VMAX values less

than 80 kt are shown in blue and those 80 kt and above shown in

red. The trend line and squared correlation coefficients (R2) are

provided.
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formed by comparing the BS to the BS of a reference

forecast [Eq. (5)]. For this study, climatology is used as a

reference forecast (see, Wilks 2006). Here the BSref is

equal to the climatological frequency of eachRI threshold:

BSS5 12
BS

BS
ref

. (5)

The BSS answers the question: ‘‘Is the forecast is supe-

rior to the reference forecast?’’ The answer is ‘‘yes’’ for

greater than zero, with a perfect score being equal

to one. BSSs will also be calculated for independent

forecasts and will again answer the same question.

Engineering fixes related to weak storms are not ap-

plied to the probabilistic forecasts. There were very

few landfalling cases during the period of verification.

Nonetheless, BSSs and reliability diagrams were cre-

ated without those cases that made landfall.

Since RIPA output also includes deterministic fore-

casts, which are produced when probabilities exceed a

threshold of 40%, have initial intensities greater than or

equal to 35kt, and are located farther than 60n mi from

land, we will also verify these using mean absolute error

(MAE) and biases. Sampson et al. (2011) found that de-

terministic forecasts produced with probabilities exceeding

40% were more optimal (lower MAE and smaller biases)

than 30% and 50%when added to the intensity consensus.

This value has been since revisited, but the 40% remains

optimal for reducing biases and MAEs in the consen-

sus intensity forecasts. One of the main motivations for

developing a deterministic RIPA was to address negative

biases in the intensity consensus during RI events, thereby

producing improved guidance for operators. For this rea-

son, the overall performance of the intensity consensuswith

andwithout RIPAdeterministic forecasts will be examined

to ensure that this is occurring.

3. Results

a. Operational performance of RIPA

Early subjective JTWC forecaster analysis of the

RIPA tools developed in Knaff et al. (2018) indicates

that collectively, the guidance worked as intended

(JTWC 2018, personal communication). During the

remainder of the 2017 western North Pacific season

and the first few TCs in the Southern Hemisphere, we

observed that RIPA deterministic forecasts were of-

ten triggered (when the probability of RI exceeded

40%) for weak and ill-formed disturbances in which

TC formation was incomplete. As a proxy for ensuring a

TC had formed, we implemented a change to require

initial intensities of at least 35 kt to trigger the RIPA

deterministic forecasts. We also observed that RIPA

generated deterministic forecasts for TCs undergoing

landfall, which is not only a distraction to forecasters but

an inaccurate forecast as well. To eliminate this quan-

dary, RIPA deterministic forecasts are now truncated

when the TC center is forecasted to be within 60n mi

of land as a proxy for landfall processes in the RIPA

deterministic forecast. Figure 2 shows the real-time de-

terministic forecasts for TC Ava, which shows both

the RIPA deterministic forecasts from before its forma-

tion and intensification during landfall at (1000 UTC

5 January). Changes were made during the middle of the

2018 Southern Hemisphere season and resulted in deter-

ministic forecasts that appeared more credible.3 These

changes were not prescribed to the probabilistic guidance.

To examine RI forecast trends, we chose two RI

thresholds, RI30 and RI45, and show seasonal MAEs,

and Peirce skill scores (Peirce 1884; Wilks 2006) for all

of JTWC’s forecast basins combined. The Peirce skill

score answers the question of howwell did the forecasts

separate the "yes" events from the "no" events? The year

2005 was chosen for the start year because this is the first

year STIPS was run operationally at JTWC. The results

for this analysis are shown in Fig. 3. The number of cases

for each year indicates that some years had very few RI

cases, so the trends are noisy. For example, there were

only 35 cases of RI30 in all of 2017. Still, some informa-

tion can be readily gleaned from these plots. The red bars

in Fig. 3 indicate the percent of time RI events were

forecast by JTWC forecasters. The percentage has in-

creased markedly in the last few years as guidance like

FIG. 2. Time series of the intensity of Tropical Cyclone Ava

(sh032018) from the best track (BEST) and deterministic forecasts

triggered by RIPA. Shown are RI25, RI30, RI35, and RI45, which

were all triggered. Note the number of cases triggered when Ava’s

estimated intensity was less than 35 kt. Landfall over Madagascar

also occurred at approximately 1000 UTC 5 Jan, resulting in a

rapid decay.

3 Forecasters were often looking at the deterministic forecasts of

RI as a function of time. Removing the deterministic cases for very

weak storms produced a time series where the deterministic RI

forecasts often corresponded to real intensity changes, and thus

appeared more credible.
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SHIPS (DeMaria et al. 2005; Kaplan et al. 2015), HWRF

(Biswas et al. 2018), COAMPS-TC (Doyle et al. 2014), and

RIPA improve. Starting in 2017, the MAEs drop to less

than 11kt at 24h and less than 13kt at 36h. The Peirce skill

scores show trends similar to percent of time RI events

were forecasted, and it isworthmentioning that the highest

Pierce skill scores have been posted in 2018 and 2019.4 So,

it appears that JTWC is forecasting RI events more fre-

quently while also reducing their MAEs in those cases.

Other guidance that has been available since 2005

has less skill according to this metric. However, to ad-

equately explain the numerous guidance techniques,

and their variations in availability over time is a study

in its own and thus will be left to future research. It is,

however, noteworthy that mesoscale hurricane models

have steadily improved since 2014 and are catching up,

particularly in statistics associated with 2018 and 2019.

Overall, the initial rollout of RIPA in JTWC opera-

tions was successful, and the engineering solutions led

to more credible deterministic RIPA forecasts; how-

ever, there were still three issues that required further

investigation. First, the forecasts for the 36- and 48-h

lead times, as well as the higher 24-h intensity change

thresholds (RI35 and RI40), varied widely from one 6-h

forecast to the next. This issue was found to be related to

differences in the high-frequency variations in the in-

frared brightness temperature standard deviation–based

predictor (SDO) from one forecast to another, and SDO

FIG. 3. JTWC forecast performance for observed RI of (top) 30 kt in 24 h (RI30) and

(bottom) 45 kt in 36 h (RI45) for the years 2005–18 (all JTWC basins) and 2019 (Southern

Hemisphere only). Red bars indicate percentage of observed RI cases for which JTWC pre-

dicted RI, blue lines indicate MAE for observed RI cases, and the yellow line indicates Peirce

scores. The number of RI cases is listed across the top of each panel and is displayed with

purple text.

4 Only Southern Hemisphere storms from 2019 were evaluated

since the season runs July 2018–June 2019.
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had large weights in both the LDA and LRE prediction

models. Second, these statistical models had difficulty

forecasting RI once a TC had reached an intensity of

about 85kt. Further investigation showed that this effect

was related to the colinearity between the VMAX and

the POT predictors, which we alluded to earlier. Both of

the issues outlined above are addressed in the new LDA

and LREmodels discussed in section 3b. And finally, the

choice of IR satellite imagery for TC in the Indian Ocean

was a dilemma. JMA’sHimawari-8 images were available

but were often from the limb and suffered from limb

darkening/cooling and reduced resolution. This issue is

addressed in the new operational RIPA implementation.

b. Dependent results (new models)

The individual LDA and LRE model components of

RIPA were refit using developmental data from all

of JTWC’s forecast basins (i.e., western North Pacific,

north Indian Ocean, and Southern Hemisphere) for

years 2000–17.Models were also refitted in such a way to

remove where possible the dependence on the SDO

predictor that estimates the coherence of the brightness

temperatures directly over the TC and to reduce the

colinearity between the VMAX and POT predictors by

capping VMAX at 75kt (i.e., as shown in Fig. 1). The

latter was thought to be related to storm organization,

specifically the existence of an eyewall structure (cf. Vigh

et al. 2012). Figure 4 shows the resulting normalized pre-

dictor weights; these can be compared to Figs. 1 and 2 in

Knaff et al. (2018). It appears that the colinearity issues

have been resolved except the LDA RI70 model, which

still shows evidence of VMAX, POT, and OHC pre-

dictors having coefficients that have signs opposite of

what would be expected in nature, suggesting colinearity

among those three variables. The remaining models all

have physically consistent coefficients.

The new models also have nearly identical dependent

fits to the same components reported Tables 2 and 3 of

Knaff et al. (2018). Figure 5 (top panel) shows the de-

pendent BSSs for both the LDA and LREmodels along

with the climatological frequency of occurrence of each

RI threshold. The bottom panel of Fig. 5 shows the

FIG. 4. (top)Normalized LDAand (bottom) LREmodel coefficients. Themagnitude of each

coefficient provides an indication of that variable’s relative importance to predicting the var-

ious RI thresholds. The 24-, 36- and 48-h intensity change thresholds are shown in blue, green,

and red tones, respectively.
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goodness of fit provided for the individual LRE models

in terms of percent deviance explained. Again, these fits

are nearly identical as those reported in Knaff et al.

(2018). These dependent statistics suggest that both

the LDA and LRE models should outperform cli-

matological frequency forecasts by 10% to nearly 30%.

Additionally, with the new model issues with noisy

variables (e.g., SDO) and collinearity (e.g., POT and

VMAX) have been removed while the total number of

predictors has been reduced. This is a preferred result

because reducing the number of predictors has been

shown to reduce artificial skill/ability (Mielke et al. 1996;

Davis 1979; Knaff and Landsea 1997).

c. Independent results (new models)

1) PROBABILISTIC

Since the individual models were developed using

analyses and best tracks from 2000 to 2017, independent

analysis of the newly developed LDA and LRE models

could only be accomplished using the tropical cyclones

of 2018 and 2019. These reforecasts use the LSDFs pro-

duced at JTWC in real time during these times and thus

introduce realistic errors caused by the use of working

best tracks and 6-h global model forecasts. Probabilistic

verification of results from the newly derived models run

on this independent dataset is shown in Figs. 6–8.

Figure 6 shows the BSS associated with the individual

models (the LDA and LRE models) and the equally

weighted average of the two (consensus or CON). The

verification is done with landfall cases included (LDA,

LRE, and CON), and also removing landfall cases

(LDA_NL, LRE_NL, and CON_NL). Removing the

landfalling cases both improved and degraded BSSs,

the former due to the effects of land on the intensity

and the latter due to removing several correctly fore-

casted no-RI cases. In all but one of the RI thresholds

(RI70, which is an extremely rare event), the consensus

shows slightly higher skills. The highestBSS values are for

RI55, but all the models are skillful compared with cli-

matological forecasts (see top of Fig. 5). The independent

forecasts have similar BSSs as dependent hindcasts based

on the dependent data, which we would not expect to see

if the models were over fitted to the dependent data (see

Mielke et al. 1996; Davis 1979). In RI25, RI30, and RI70,

the forecasts perform noticeably better for the indepen-

dent forecasts than for the dependent forecasts. This re-

sult is likely due to the limited 2-yr sample and the

infrequency of RI events in general (i.e., by chance).

The reliability diagrams associated with the RI

thresholds are shown in Figs. 7 and 8. Reliability di-

agrams consist of two components that are the cali-

bration function showing the relationship between

binned forecast probabilities and observed frequencies,

and the refinement distribution that shows the number

of forecasts included in each bin and indicates the ag-

gregate forecast model confidence. These results are

comparable to the independent results presented in

Fig. 4 of Knaff et al. (2018). It is important to note that

there are very few cases at the highest forecast

FIG. 5. (top) Brier skill scores for the LDAmodel (blue bars), the

LRE model (yellow bars), and climatology (red line) for each RI

threshold. (bottom) Percent deviance explained by the LREmodel

for each RI threshold. All results based on dependent data from

the JTWC 2000–17 dataset.

FIG. 6. BSSs associated with the 2018–19 independent verifica-

tion of RI events associated with 25-, 30-, 35-, and 40-kt changes in

24 h (RI25, RI30, RI35, RI40); 45- and 55-kt changes in 36 h (RI45

and RI55); and 70-kt changes in 48 h (RI70). Note that final best

tracks were available for 2018 and preliminary best tracks were

used for 2019. There were 2177 forecasts made of which 1994, 1885,

and 1788 cases were available for the no-landfall evaluation at 24-,

36-, and 48-h lead times, respectively.
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probabilities and that the inset refinement distributions,

which in general would be considered ‘‘high forecast

model confidence’’ as described in Wilks (2006), are

presented as a function of the log of the number of cases

(count). In general, the independent results presented

here show that the new models generally have better

calibration or 1:1 correspondence with the observed

frequency and tend to be less biased when compared to

their predecessors. Figure 7 shows that RI24 and RI30

have good calibration, and RI35 and RI40 forecasts tend

to slightly overforecast. Figure 8 shows that RI45 and

RI55 forecasts also slightly overforecast as well as how the

calibration breaks down for the very rare event of RI70.

The improvements in these new models resulting from

capping VMAX at 75kt and removing the SDO from the

models are particularly evident at the higher-intensity and

FIG. 7. Reliability diagrams for (top left) RI25, (top right) RI30, (bottom left) RI35, and (bottom right) RI40. Accompanying each

reliability diagram is the refinement distributions that show the forecast frequency bins vesus the log of the number of cases, which are

inset to the upper left in each panel. Results are based on independent forecasts from 2018 and 2019 in the westernNorth Pacific, Southern

Hemisphere, and Indian Ocean basins, landfalling cases removed. Final and preliminary best tracks in 2018 and 2019, respectively, are

used for verification.
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longer-lead RI thresholds. It is nonetheless noteworthy

that some of the highest forecast probabilities were

misses as seen in RI30, RI35, RI40, and RI45. All these

misses were the same case. TC Dumazile (2018), while

forecast to have very rapid/explosive intensification,

only experienced a 25-kt increase in intensity.

2) DETERMINISTIC (CONSENSUS)

Deterministic RI guidance (RIPA) is evaluated in

Fig. 9, which shows the National Hurricane Center’s

RI thresholds of 20-kt intensification in 12h, RI30, and

RI45. Recall that the threshold used in Knaff et al.

(2018) to trigger a RIPA forecast was 40% probability

or greater. In this effort, we combined the individual

deterministic RI aids (RI25, RI30, RI35, RI40, RI45,

RI55, RI70 in the ATCF format) so that the maximum

RI rate for a given time interval is used as the RIPA

forecast. This is done to simplify the construction of a

consensus with (ICNW) and without RIPA (ICNC).

As in Knaff et al. (2018), the aids that are used to con-

struct the consensus ICNW are Decay SHIPS (see

DeMaria et al. 2005) driven by two different global NWP

models [the Global Forecasting System (GFS 2019) and

the Navy Global Environmental Model (NAVGEM;

FIG. 8. As in Fig. 7, but for (top left) RI45, (top right) RI55, and

(bottom left) RI70.
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Hogan et al. 2014); DSHA and DSHN in the ATCF

format], COAMPS-TC (CTCI in the ATCF format, see

Doyle et al. 2014), HWRF (HWFI in the ATCF format;

see Biswas et al. 2018), a simplified intensity model

(CHII in the ATCF format; see Emanuel et al. 2004),

and RIPA. The available intensity forecasts for each

individual aid are included in the ICNW average. These

error/bias results (Fig. 9, top) are comparable to the

independent results presented in Knaff et al. (2018) in

that the RIPA bias is generally more positive than the

consensus bias and that adding RIPA to the consensus

reduces negative bias in RI cases. As seen in the nega-

tive biases in the consensus forecasts, RI is still a chal-

lenge for the consensus members as a group and RIPA

is a positive contributor in that regard. In Fig. 9 (middle),

and for RI30 and RI45, RIPA is shown to have a slightly

higher probability of detection (POD) and lower false

alarm rate (FAR) than consensus without RIPA. The

corresponding Peirce skill scores shown in Fig. 9 (bot-

tom) indicate some success at forecasting RI for RI30

and RI45 thresholds, and thus shows slight positive im-

pact on the consensus in this measure of success.

4. Summary and conclusions

In late 2017, the Rapid Intensification Prediction Aid

(RIPA) was transitioned to operations at the Joint

Typhoon Warning Center. This was the first statistical

guidance developed specifically for predicting the like-

lihood of RI in the western North Pacific. RIPA predicts

several RI thresholds over three separate time periods

and was described in Knaff et al. (2018). RIPA’s prob-

abilistic forecasts are also used to produce deterministic

forecasts when probabilities exceed 40%. Deterministic

forecasts are then incorporated into the operational in-

tensity consensus, which effectively reduces negative bia-

ses while not increasing the MAE. The original RIPA

worked surprisingly well and was incorporated into the

operational forecast process. Nonetheless, running real-

time operational RIPA forecasts exposed some weak-

nesses. These included over prediction of RI for weak and

disorganized tropical systems (i.e., systems with maximum

winds less than 35kt), prediction of RI during landfall,

input data reliability, and statistical inconsistencies within

the models. All but the last of these were addressed by

simple engineering solutions applied to just the determin-

istic forecasts triggered byRI probabilities exceeding 40%.

The last issue (statistical inconsistencies within the

models) were traced to two specific issues: collinearity

between the initial intensity (VMAX) and the potential

intensity minus the initial intensity term (POT), and the

noisy behavior of the IR brightness temperature stan-

dard deviation term (SDO). To remove the collinearity

FIG. 9. (top) Mean absolute error (MAE; solid lines) and bias

(dotted lines), (middle) POD (solid lines) and FAR (dotted lines),

and (bottom) Peirce scores for RIPA and the consensus with and

without RIPA (ICNWand ICNC, respectively). Evaluation includes

the Southern Hemisphere, western North Pacific, and Indian Ocean

2018 seasons and Southern Hemisphere 2019 season. Total cases/RI

cases are shown in parentheses.
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between VMAX and POT, VMAX was capped at 75 kt.

To address the noisy SDO behavior, the term was re-

moved in the derivation of the new models. The depen-

dent results for the new models were nearly identical to

those presented in Knaff et al. (2018), and the inde-

pendent results appeared to improve reliability and bias

(Figs. 7 and 8). These updates were implemented in

JTWC’s operations in June 2019 and are now the op-

erational basis for the RIPA forecasts.

One highlight of our analysis is that JTWC rapid in-

tensification forecasts have becomemore frequent while

the mean errors have remained near all-time lows (Fig. 2).

The authors speculate that improvements in NWP and

other guidance (e.g., RIPA) have enhanced JTWC’s

ability to forecast RI. Nonetheless, there is still plenty

of room for improvement. Forecast busts are often a

function of storm structure or unique environmental

features (e.g., the cases discussed in Ryglicki et al. 2018)

that are currently difficult to capture with existing NWP

models and certainly statistical aids. Future work will

involve studying false alarm and missed forecast cases

for common features that could aid forecasters and

algorithm developers and expanding RIPA capabil-

ities to include other thresholds and other TC basins.

The authors expect that the remaining RI forecast issues

are going to be more difficult and time-consuming to ad-

dress, but necessary to make further headway on this

problem.
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